If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+3x-2=0
a = 14; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·14·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*14}=\frac{-14}{28} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*14}=\frac{8}{28} =2/7 $
| t2+7t=60 | | -6z^2-6z+8=0 | | x/100+150=x | | 4(x^2-8x-425)=0 | | x+x/100=150 | | 6n-(4+5n)=7 | | (30-2x)(15-2x)x=0 | | 6785x*68930=3515 | | 5x^2+36x+1=0 | | 2x*4x=8 | | 5x+7x-2=6-14x+12x | | 3x+12=8x-48 | | Y12+3y-8=180 | | 8d=5.6 | | 2x^2+4x-60=180 | | (5+d)/2=14 | | 2y=3×-6 | | 0=x3-8 | | 2m+5=3(m-8) | | 10x+3=(-5) | | 5x=1550 | | -7+(y/5)=3 | | 2c+5=(c-8) | | 8+10x=-9-7x | | 3m+4m+1=5m+2+3 | | 5x=1800 | | 7(2x-12)=x+72 | | (8+6)+(4r-1)=14 | | 10y+3=0 | | 26=-5g+6 | | 2x+3/4=0 | | F=9/5(k-263.15)+32 |