If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+3x-9=0
a = 14; b = 3; c = -9;
Δ = b2-4ac
Δ = 32-4·14·(-9)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{57}}{2*14}=\frac{-3-3\sqrt{57}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{57}}{2*14}=\frac{-3+3\sqrt{57}}{28} $
| 10x2+8x+5=0 | | 19x2-20x-5=0 | | 16x2-10x-16=0 | | 19x2+18x-14=0 | | 5x-13=-40 | | 12x2-3x-14=0 | | 90h+60=600 | | 15x2-5x-15=0 | | 7x2-3x+7=0 | | 20x2+11x+8=0 | | 3x2-3x+3=0 | | 3x2+18x+7=0 | | 6x2-19x-6=0 | | 10x2-5x-6=0 | | 11x2+20x-1=0 | | 19x2+11x-6=0 | | -7(6=d=49 | | x+3/2x-4=5 | | 5(2-1/2y)+3y=9 | | 18x2-8x+4=0 | | 20x2-16x-5=0 | | 14x2+14x-17=0 | | 6x2-4x+7=0 | | 3x2+12x+8=0 | | 11x2-10x-14=0 | | 3^(5x-2)=27 | | -12(.5)+h=-8.5 | | 4y=3y-15 | | 7+2x=-29 | | -3-x=18 | | -9+x/8=-12 | | 2(x+4)+x+1=3x+9 |