If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+4x-13=0
a = 14; b = 4; c = -13;
Δ = b2-4ac
Δ = 42-4·14·(-13)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{186}}{2*14}=\frac{-4-2\sqrt{186}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{186}}{2*14}=\frac{-4+2\sqrt{186}}{28} $
| 16x2+13x+6=0 | | 6x=48= | | 5y^2+14y-8=0 | | 6x^2-31x+15=0 | | 3x(2x+5)=15 | | x2+11x+34=4 | | -5+3f=7 | | -4-3(4x+2)=3(5-2x)+1 | | 2x/3-x/3=x/4+3/2 | | n/2+n/3=35-n+30/5 | | 3(3x+5)+5(2x-9)=3(4x-3)-15 | | 5n-4/5=20 | | 2p-1=p+12 | | 10b+10=-5+7b | | 84x-17x-67=0 | | 3x+12=7-40 | | -7t=-8t-3 | | x/10+(x+8)/2=2x/5+5 | | 9y-5=24 | | x^2+16x+260=0 | | -50=-10+-2x | | 36/d=60d= | | 180=8x-5+10x+5 | | 8+3x=-4x+1 | | 7+4x=9x+5 | | 2.07+24+x=33.03 | | 2048=2^(n+1) | | 3m^2-17-56=0 | | (x+1)*(x+1)=4/9 | | 1/2(6x+5)=3x+25 | | 14*(4x-4)-6*(18+16x)=-72 | | -5x-7=8x+58 |