If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+7x=0
a = 14; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·14·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*14}=\frac{-14}{28} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*14}=\frac{0}{28} =0 $
| z/5-12=-7 | | 6x+-8=22 | | s4=222 | | 10x-3/x=2 | | -18-6x=-9x+39 | | 3x-20=4x+5 | | 4/16^x+1=1 | | -21=-2x+9 | | -1y=-7 | | 84=7(2x-9) | | c/7=-5 | | 2/3(12x+18)=8x-2x-22 | | −5(7n−2)=37−8n | | 3=x/12-5 | | r1.25=0.75+r | | 3/4w+6=0-1/4w | | 2x/3+x/2=14/3 | | 3-(12x+8)+2(5x-3)=17 | | -9x-7=27x-6(6x-7) | | 7+3x/4=16 | | 3^x-4=27 | | 15x-235=64+2x | | 6-(8-4x)=2(2x-1) | | -4+6p+18+3p=9(p+1)+5 | | 4(2x+1)=10x+4-2x | | A2+16a-1=0 | | (2x+10)/9=2 | | x+2=x/0.8 | | 16-w=24 | | 8x=100-20 | | -3(4-x)=2(x+1) | | 9x+15-10x=30 |