If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-14=0
a = 14; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·14·(-14)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*14}=\frac{-28}{28} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*14}=\frac{28}{28} =1 $
| X+(x+13)=153 | | 42-4v=-30 | | 4/3w-12=2/3w•3/4 | | 7.8+7-2.8x=2 | | 37+(3x+47)=(5x+62 | | a+(-7)=3 | | 13=1/6+2x | | -2x+30=-6 | | X+27=x+3 | | 28=-4(n-8) | | 14x+8x-24=2x^2+8x | | |x+5|=4 | | -8=x/2+2 | | -(B-1)-8b=16-6b | | -6s–-18s–8s–-12s=16 | | -9=-7(7k+3)+4(5k+3) | | 12/5x=7/15 | | 8.1+(-1.8h)=-7.2 | | 10-5n=35 | | 1.331=c3 | | 258-x=19 | | 16+2k=1 | | 7^2x-9.7^x=-14 | | 5(n-15)=20 | | x+21=20 | | n^2-3n+2=60 | | 8x-7=-16 | | 2+n/8=1 | | 11k+6=k+7 | | 7^2x-9.7^x+14=0 | | 84=b^2+3b | | -5(x-5)=3(10-2x)+x |