If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-19x-3=0
a = 14; b = -19; c = -3;
Δ = b2-4ac
Δ = -192-4·14·(-3)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-23}{2*14}=\frac{-4}{28} =-1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+23}{2*14}=\frac{42}{28} =1+1/2 $
| w/4-15=12 | | x*x*x*x+x*x+1=0 | | 46+67+x=180 | | 13=v/2-13 | | −9x+17=8 | | x2x2+x2+1=0 | | 14-4x=-8x+6x | | 60-3a=11-10a | | x-(-7)=5−(−7)=5 | | x4+x2+1=0 | | Y=6.5x-6 | | (x-6)(5x^2+x-8)=0 | | 3x-1=9x-85 | | x2-3x-130=0 | | 3^x=54 | | 4p+7=-6p+3(p-7) | | 2t-8=3t | | -2=-8+7y | | 3x-21=16+3x | | 1/x-2+1/x+2=4/x^2-4 | | (7x−4)+(9x−40)=180 | | 4f=6=23 | | $0.75n=36 | | 4a+30=2(6a-1) | | 2x2-50=0 | | $0.75/n=36 | | 8+3(x-6)=4 | | 3x-65=10 | | 15x2+17x+4=0 | | 8(z+8)=-56 | | 27+27i=0 | | 3+2x+4=4x-3 |