If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-21x=0
a = 14; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·14·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*14}=\frac{0}{28} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*14}=\frac{42}{28} =1+1/2 $
| 4x+23=6×+31 | | -5x+11=0 | | 13x+18=3x+278 | | (x-4)x^2+50=25 | | 3x-19+7x=2x+33-7×7×7 | | X2/10-3x=0 | | n^2-25n-3=0 | | 1/x+3x=7/2 | | -13+3x=39+9x | | 9-6x=-3+4x | | 531=(v×6)+21 | | 3k+2k^2=27 | | 4m-3+2m=19+5m-2 | | 9(x-1)=2(3x-1) | | 8x+7=11x+5 | | 3(7n+13)=2 | | 6x-2(-x-15)=-50 | | 4x^2-91=0 | | 5x²=2x | | (5^x^2)-(25^3x-4)=0 | | 6x+4x=250 | | 7n^2+52n+60=0 | | x=10+6/4 | | 2/3k=-16 | | 7x-x+5=99 | | 6m=10-18/5 | | (2y+32)/(3y-2)=4 | | 7/2x+5-3/10x+10=11/120 | | 5x-3-2x-1=17+7x-6 | | 7s-21=182 | | 3(x+4)-4(7+4)=27 | | 3(x+7)+6(7-4)=56 |