If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-56x-10=0
a = 14; b = -56; c = -10;
Δ = b2-4ac
Δ = -562-4·14·(-10)
Δ = 3696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3696}=\sqrt{16*231}=\sqrt{16}*\sqrt{231}=4\sqrt{231}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{231}}{2*14}=\frac{56-4\sqrt{231}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{231}}{2*14}=\frac{56+4\sqrt{231}}{28} $
| (x-9)/2x=5 | | −7x2−24x−9=0 | | x2+2x+1=0 | | -1-(-42=x/6 | | 7/5x+8=16 | | 8x-2=15+2 | | 8x^2+64x-64=0 | | 8x-2=15x2 | | x×4-3=0 | | 4-3x4+(3x-19)=3+126+3x | | 200=-25b | | 5p+2=7 | | 10-3x=8-2x | | -7/6x=-49 | | n+5=19(n=1) | | 2x-√15-4x=0 | | 7-6(2x-3=42) | | -10+2y=-4 | | a^2+6a+13=0 | | 2^x+2=5^3x×3 | | -8x-10x=-26 | | 6+n+n=16 | | 6+6n+6n=60 | | -9x+42=44 | | 3+5+8n=70 | | 7r+10r=153 | | 7=w+9.8 | | 4x=24=6x | | 4+5n=20 | | 16x^2-24x-1=0 | | 3/2x-1=7/10x-7/15 | | -8/7x=-7 |