If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=9x
We move all terms to the left:
14x^2-(9x)=0
a = 14; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·14·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*14}=\frac{0}{28} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*14}=\frac{18}{28} =9/14 $
| 7y2=-5y | | (x+5)(x-5)=(+5x) | | 1910=31z | | (x+5)(x-5)=x(+6x) | | 2310=23y | | b^2-18=16^2 | | (x+5)(x-5)=x(+5x) | | 6x^2+3x-4x^2=0 | | 30=0.5*9.81*t^2 | | 8x+3+8=10 | | -14+5x=-6(1+4x)-8 | | (x+5)(x-5)=x(-5x-10) | | (x+5)(x-5)=x(+5x+10) | | 15x+14=299 | | -3j=-3-6j | | 3p+10=5p-10 | | (x+5)(x-4)=x(+7x+20) | | -6r+8=-10-6r | | a^2+8a-10=0 | | -6w-4w=-10w | | r^2-29=0 | | 4n+3-2n-7=20 | | 11d-9d=5d+28 | | 1.2x-5.3=7x-3.7 | | F(10)=2x-3 | | (9x+2)=(2x+20) | | F(x)=110 | | (9x+2)=(5x-18) | | 5(x+4)=3x=28 | | (2x-2)+(4x+2)=180 | | 15=7(4p+1)+8(1+6p) | | (2x-29)+(7x+2)=180 |