If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15(15+2z+1)=(z+3)(6+z+3)
We move all terms to the left:
15(15+2z+1)-((z+3)(6+z+3))=0
We add all the numbers together, and all the variables
15(2z+16)-((z+3)(z+9))=0
We multiply parentheses
30z-((z+3)(z+9))+240=0
We multiply parentheses ..
-((+z^2+9z+3z+27))+30z+240=0
We calculate terms in parentheses: -((+z^2+9z+3z+27)), so:We add all the numbers together, and all the variables
(+z^2+9z+3z+27)
We get rid of parentheses
z^2+9z+3z+27
We add all the numbers together, and all the variables
z^2+12z+27
Back to the equation:
-(z^2+12z+27)
30z-(z^2+12z+27)+240=0
We get rid of parentheses
-z^2+30z-12z-27+240=0
We add all the numbers together, and all the variables
-1z^2+18z+213=0
a = -1; b = 18; c = +213;
Δ = b2-4ac
Δ = 182-4·(-1)·213
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-14\sqrt{6}}{2*-1}=\frac{-18-14\sqrt{6}}{-2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+14\sqrt{6}}{2*-1}=\frac{-18+14\sqrt{6}}{-2} $
| -2v+29=9v-81 | | 21=x/7+20 | | 33c+15=3 | | -7+4x=53 | | -9u+63=5u-35 | | 2z+2z+3z+z=212 | | -2u+28=-4u+16 | | 2* x/2 =2x-3 | | x-4=x+10 | | (4x-3)x6=x | | 4(x-11)=4x-11 | | 2x-41=2x+41 | | 3s-30=6s-81 | | 19x-18-10x=3(3x-6) | | 19x-18-10x=3(3x-6 | | 15(15+2z+1)=z+3(6+z+3) | | 7c-72=8c-86 | | -9+4(1-3f)=-35 | | 1/4(x+28)=1/4x+7 | | 5(-h-3)=-5h-15 | | a+72=4a-78 | | 4(x-9)+2=-18 | | -5(7-6h)=-32 | | -2(18-37y)=7y+2y | | (a+72)+(4a-78)=+80 | | 2x+1=5x- | | 3u-96=2u-37 | | 0=12-2x-x^2 | | (2u-4)+(2u-84)=180 | | 2(k-3.8)=3(k-3.8) | | (6x−7)=(2x+12)+(x−1) | | 2n+7=6n-5 |