15(6x2+7)=38(24x+3)

Simple and best practice solution for 15(6x2+7)=38(24x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15(6x2+7)=38(24x+3) equation:



15(6x^2+7)=38(24x+3)
We move all terms to the left:
15(6x^2+7)-(38(24x+3))=0
We multiply parentheses
90x^2-(38(24x+3))+105=0
We calculate terms in parentheses: -(38(24x+3)), so:
38(24x+3)
We multiply parentheses
912x+114
Back to the equation:
-(912x+114)
We get rid of parentheses
90x^2-912x-114+105=0
We add all the numbers together, and all the variables
90x^2-912x-9=0
a = 90; b = -912; c = -9;
Δ = b2-4ac
Δ = -9122-4·90·(-9)
Δ = 834984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{834984}=\sqrt{36*23194}=\sqrt{36}*\sqrt{23194}=6\sqrt{23194}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-912)-6\sqrt{23194}}{2*90}=\frac{912-6\sqrt{23194}}{180} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-912)+6\sqrt{23194}}{2*90}=\frac{912+6\sqrt{23194}}{180} $

See similar equations:

| 8-5p=-52 | | 2x/5+1/2=3x/10 | | 4-8x=-1+1-9x+8= | | y/y-3=2 | | 98=-7v+7 | | -5(x+4)=-2(2x1) | | 80+2x=50+x | | 4-8x=-1+1-9x8= | | y/2(2+2)=1 | | 7/x-4x/2x-3=-2 | | 3x4=12-x | | x/2(2+2)=1 | | c-7/c+2=1/4 | | 3x/5x+10/10=5/7 | | -18x+90=-20(1+2x)= | | 5x/30+6x/30=45/30 | | 4/3x-5/2x=5+1/6x | | 5(4+x)=5+6x= | | 10/x-3=9/x-5 | | 20+3b=3-7b | | 5/2x+4=0 | | 13+14x=25+12x= | | 2(3x+4)-5=9+3(x-1) | | x-12=-5+2x= | | -53=-4-7x | | (2x-9)+(11x-31)+(6x+26)=360 | | 2(w+5)-3=4w+2w+3 | | -1m+6=2 | | 3a+1=−7a−14/−4 | | x/4-2.3=4.1 | | x/4-23=41 | | 1m+-8=-2 |

Equations solver categories