15(b-2)+15=b(2b-9)

Simple and best practice solution for 15(b-2)+15=b(2b-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15(b-2)+15=b(2b-9) equation:



15(b-2)+15=b(2b-9)
We move all terms to the left:
15(b-2)+15-(b(2b-9))=0
We multiply parentheses
15b-(b(2b-9))-30+15=0
We calculate terms in parentheses: -(b(2b-9)), so:
b(2b-9)
We multiply parentheses
2b^2-9b
Back to the equation:
-(2b^2-9b)
We add all the numbers together, and all the variables
15b-(2b^2-9b)-15=0
We get rid of parentheses
-2b^2+15b+9b-15=0
We add all the numbers together, and all the variables
-2b^2+24b-15=0
a = -2; b = 24; c = -15;
Δ = b2-4ac
Δ = 242-4·(-2)·(-15)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{114}}{2*-2}=\frac{-24-2\sqrt{114}}{-4} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{114}}{2*-2}=\frac{-24+2\sqrt{114}}{-4} $

See similar equations:

| 2/3+w=2/3 | | -18x+10=50 | | 8u-4=4 | | 4x+48=5x | | x+3=8x-9=7x+4 | | 8w+6=-5w-9 | | 8w+6=-5w9 | | 6-4x=44x+24 | | 9=y/2 | | 385=7x+35 | | y=7(6)+2 | | 9(m-3)+-3m=7m+43 | | 3b-2=44-5b | | 13x+8=39+9x-3 | | 1.5-0.9v+2.1=4.5 | | 26=-3k-4k | | 7x-5=57+12x+12 | | 5(y+4)+10(y-2)+6=X | | 3x-2=(-55) | | 1,997x+140.50=3,425x+110.75 | | 3x-2(4x+2)=11 | | 1.5v-9.v+2.1=4.5 | | 385=x+5x+35+x | | 13/2x=11/2 | | 10x-2=44+15x+12 | | 7x-15=33(x) | | 13/2x=11/12 | | 2k+2/3=(k-3)/2-10 | | 3x+15x+100=180 | | (8x^2+6x-2)-(3x^2-7x+5)=(8x^2+6x-2) | | 1/2m-4=3 | | 2|3x−1|=10 |

Equations solver categories