15+(2/5)x=30

Simple and best practice solution for 15+(2/5)x=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15+(2/5)x=30 equation:



15+(2/5)x=30
We move all terms to the left:
15+(2/5)x-(30)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)x+15-30=0
We add all the numbers together, and all the variables
(+2/5)x-15=0
We multiply parentheses
2x^2-15=0
a = 2; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·2·(-15)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*2}=\frac{0-2\sqrt{30}}{4} =-\frac{2\sqrt{30}}{4} =-\frac{\sqrt{30}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*2}=\frac{0+2\sqrt{30}}{4} =\frac{2\sqrt{30}}{4} =\frac{\sqrt{30}}{2} $

See similar equations:

| 2/3k=124/9 | | -2(-4z)=72 | | X=33-12y | | -135=-64-24n-7 | | 5x+26∘=5x+10∘ | | 11=-6x+17 | | -105=-21-14n | | 5×=3.5x+50 | | 86=6-24x+8 | | 4a=20a= | | 3(3-x)=(-4)+9-3x | | 50-3.5x=5+3.5x | | 6r-21-28r=111 | | 16^2x=75 | | 5x+64=19 | | 14x^2+9x+8=0 | | 220=2a-4(5-7a) | | -7(m-3)-3m=81 | | 15-(15*3/100)=x | | 12w-12/7=11w+9/7 | | 6(0.83x+0.67)=-9(6) | | 10x+15-5=10 | | 3.2=1.9g | | .18x+5.4=1x | | 4x^2=42x+72 | | 27+9=3p | | 6(0.83x+0.67)=-9 | | 3(x-8)=7x-28 | | x+(x*3/100)=15 | | -22=p/15 | | 4(v+2)=8(v-6) | | 5x+4x-6=x |

Equations solver categories