If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15+6(m+3)=2m(m+3)
We move all terms to the left:
15+6(m+3)-(2m(m+3))=0
We multiply parentheses
6m-(2m(m+3))+18+15=0
We calculate terms in parentheses: -(2m(m+3)), so:We add all the numbers together, and all the variables
2m(m+3)
We multiply parentheses
2m^2+6m
Back to the equation:
-(2m^2+6m)
6m-(2m^2+6m)+33=0
We get rid of parentheses
-2m^2+6m-6m+33=0
We add all the numbers together, and all the variables
-2m^2+33=0
a = -2; b = 0; c = +33;
Δ = b2-4ac
Δ = 02-4·(-2)·33
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{66}}{2*-2}=\frac{0-2\sqrt{66}}{-4} =-\frac{2\sqrt{66}}{-4} =-\frac{\sqrt{66}}{-2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{66}}{2*-2}=\frac{0+2\sqrt{66}}{-4} =\frac{2\sqrt{66}}{-4} =\frac{\sqrt{66}}{-2} $
| 180=10x+18+13x+6 | | 4x-3=(x+5) | | 4+1=1+c | | F(x)=5/3x-8 | | X-0.40x=450 | | 15x–30=45 | | x/5+50=180 | | 2x/15+5=-1/5 | | 2/3x=-6/4 | | -2-13.8x=-8x1(6x+1) | | 23x=13+14 | | 9/27=5/a= | | 4u-16=-6(u+6) | | 5/a=9/27= | | 0.60x=450 | | 4.1h+0.27=4h | | 5=0+q | | 10g-g+g-5g-4g=18 | | -10-3x^2=-310 | | 6(x-2)+14=3(x+2)-10 | | x^2=12x36 | | 8x-12=56 | | 24x=24x+24 | | 10x+8(x-2)=78 | | 8x+30=126 | | 4(x+6)=2(x+5)+2 | | 1/5g=4/8 | | 88=-8(3+7n) | | -5/8n=-10 | | 1.5n=0.75n | | 17k-11k-6k+5k=20 | | -24=6x/5 |