15+x/x+7=x+7/x

Simple and best practice solution for 15+x/x+7=x+7/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15+x/x+7=x+7/x equation:



15+x/x+7=x+7/x
We move all terms to the left:
15+x/x+7-(x+7/x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x/x-(+x+7/x)+15+7=0
We add all the numbers together, and all the variables
x/x-(+x+7/x)+22=0
We get rid of parentheses
x/x-x-7/x+22=0
Fractions to decimals
-7/x-x+22+1=0
We multiply all the terms by the denominator
-x*x+22*x+1*x-7=0
We add all the numbers together, and all the variables
23x-x*x-7=0
Wy multiply elements
-1x^2+23x-7=0
a = -1; b = 23; c = -7;
Δ = b2-4ac
Δ = 232-4·(-1)·(-7)
Δ = 501
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{501}}{2*-1}=\frac{-23-\sqrt{501}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{501}}{2*-1}=\frac{-23+\sqrt{501}}{-2} $

See similar equations:

| 3c-20-10=180 | | 128-x=170 | | 4x`54x+6-2x=-5-x | | 5x-40=-4 | | -5x-7(x+7)=-145 | | z/4-2=5 | | x^2-6x+14=-18 | | 11–3x=95 | | -328=8(-7v+1) | | -24=-n-3n | | 3(a-4)+1=9-a | | 196.35=(x+8.2+2.5)17 | | n·1/5=9 | | 2x+7=7(x+3)-9 | | 4x-10=-2x-16 | | -3m+7=28 | | 5/4m+5=71/2 | | x^2=6*24 | | 35+3x-11=2 | | -1/2x-1=1/4x-4 | | (8)(13^7x)=73 | | 4j+5=49 | | -4+5d=-5d-4 | | 2x/5-2=8 | | 4-3m=-23 | | 100y-25=25y+50 | | 9≥4x+1=12x+312x+3 | | 74+90+x=180 | | 2+6(x-4)=4x-18+3x | | -3x=1=7+x | | 8-6v=-10v | | 6+1=14y+4-13y |

Equations solver categories