If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15-1/6n=16/n-1
We move all terms to the left:
15-1/6n-(16/n-1)=0
Domain of the equation: 6n!=0
n!=0/6
n!=0
n∈R
Domain of the equation: n-1)!=0We get rid of parentheses
n∈R
-1/6n-16/n+1+15=0
We calculate fractions
(-n)/6n^2+(-96n)/6n^2+1+15=0
We add all the numbers together, and all the variables
(-1n)/6n^2+(-96n)/6n^2+1+15=0
We add all the numbers together, and all the variables
(-1n)/6n^2+(-96n)/6n^2+16=0
We multiply all the terms by the denominator
(-1n)+(-96n)+16*6n^2=0
Wy multiply elements
96n^2+(-1n)+(-96n)=0
We get rid of parentheses
96n^2-1n-96n=0
We add all the numbers together, and all the variables
96n^2-97n=0
a = 96; b = -97; c = 0;
Δ = b2-4ac
Δ = -972-4·96·0
Δ = 9409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9409}=97$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-97)-97}{2*96}=\frac{0}{192} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-97)+97}{2*96}=\frac{194}{192} =1+1/96 $
| 49(2/5)+x=3(2/11) | | 500+80+20+9=500+10n+9 | | 54x+1,226x-88=32(40x+23) | | -2x+15=-3(2x+3) | | 8y=-2(3y-7 | | 5+a2=-13 | | -3(x+2)=5x+2 | | 2(3x+1)=11x+1-5x+1 | | 9*m+12=5*9*m | | 6x+1=11x+1-5x+1 | | 9*m+12=5.9*m | | 2(9-4y)+3y=5 | | b2=20 | | 5(2x+4)=6(1x+5) | | 19d^2-39d=0 | | 50+x(3*50+x)=1000 | | 4(x+3)=-(7x+10) | | -3+18b=6b+5 | | 2(2x-4)=3(1x+6) | | 3x−16−5x=40 | | 2*5x-9=3x+2+5x | | 7x+6x+3+10x-5=180 | | 18j^2+96j+78=0 | | 10a-100a+20=100a | | (5y+2)^2=0 | | n^2+3n-88=0 | | 14b+6b=-12 | | 5/8=4y0 | | 5+19*x=43 | | 5/n+6=10/n | | 30x=-2-100x^2 | | 4-7x=x+14 |