15-1/p=-1+3/5p

Simple and best practice solution for 15-1/p=-1+3/5p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15-1/p=-1+3/5p equation:



15-1/p=-1+3/5p
We move all terms to the left:
15-1/p-(-1+3/5p)=0
Domain of the equation: p!=0
p∈R
Domain of the equation: 5p)!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
-1/p-(3/5p-1)+15=0
We get rid of parentheses
-1/p-3/5p+1+15=0
We calculate fractions
(-5p)/5p^2+(-3p)/5p^2+1+15=0
We add all the numbers together, and all the variables
(-5p)/5p^2+(-3p)/5p^2+16=0
We multiply all the terms by the denominator
(-5p)+(-3p)+16*5p^2=0
Wy multiply elements
80p^2+(-5p)+(-3p)=0
We get rid of parentheses
80p^2-5p-3p=0
We add all the numbers together, and all the variables
80p^2-8p=0
a = 80; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·80·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*80}=\frac{0}{160} =0 $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*80}=\frac{16}{160} =1/10 $

See similar equations:

| -8w+7=-7w | | x-123=6 | | -40x-49x-15-50=103-5x | | -3x-5x+4-x+7=88 | | 9.9n+5.87-0.62=-0.2n-1.82 | | 2+8(g-15)-7=19 | | h+21/15=-7 | | Y-6y=10 | | −14​(x+2)+5=−x​ | | 48-a=-11 | | Y-6y=10,2Y-7Y=4 | | -2(5x+2)+3-x=50 | | 10-k=-2k+2 | | 4x+2x-8=2x+4 | | 3(2+5x=3 | | -3s=-8-4s | | -18+1/9a=-3 | | 14−8 | | 10+5q=-8+8q | | 2(3x+2)+2x=20 | | √13v=√4+11v | | 5/7b-23=6 | | 4h-(3h-12)=-1/4(28h-16) | | (3x-4)(2-3x)=0 | | (6x-4)=(9x-4) | | 0.10(y-4)+0.08y=0.02y-1.4 | | 100=20x+5=9x-7 | | -5x+4=51 | | 2(3x−4)+7= | | 4x+5=(4+8x)/2 | | 5252(w+2)-11=2w+(9-7 | | x+24+x-42=180 |

Equations solver categories