15-6x2=+3x2=+23

Simple and best practice solution for 15-6x2=+3x2=+23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15-6x2=+3x2=+23 equation:



15-6x^2=+3x^2=+23
We move all terms to the left:
15-6x^2-(+3x^2)=0
We get rid of parentheses
-6x^2-3x^2+15=0
We add all the numbers together, and all the variables
-9x^2+15=0
a = -9; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-9)·15
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*-9}=\frac{0-6\sqrt{15}}{-18} =-\frac{6\sqrt{15}}{-18} =-\frac{\sqrt{15}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*-9}=\frac{0+6\sqrt{15}}{-18} =\frac{6\sqrt{15}}{-18} =\frac{\sqrt{15}}{-3} $

See similar equations:

| x+3x-4=9x+7 | | -4/3=x/(1/2) | | 7/1=n/16 | | 1/2(x+7)+3/4x=1/4x-1/2 | | -6a+2a=20 | | 72+(10x)=112 | | -6n-1-10=31 | | 6.50/1=n/25 | | 1/2(x+7)3/4x=1/4x-1/2 | | $6.50/1=n/25 | | 4m+8=-3+7 | | 7(2x-1)=5=14x-12 | | 13=5b-8+1 | | 4j-8(2-j)=90 | | 10=4y+7 | | -8=7n-7n | | 5x-9=2x+24 | | 63+(.25x)=x | | 1.5x+0.5x+3=0 | | 10+2a=50 | | 11=1-8x-6 | | -4h=5(-4)+3 | | 8y=12×-28 | | (x+6)(6x-8)=0 | | -6n-11=31 | | (X)(x+1)=xxx+x | | 84=6(x-6) | | 25-8h-9+2h=166 | | 1.8x^2-3.8x+5=10 | | 89-y=160 | | x-2+x-6=10 | | 2.9=x-6.3 |

Equations solver categories