If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15-8x-3x^2=0
a = -3; b = -8; c = +15;
Δ = b2-4ac
Δ = -82-4·(-3)·15
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{61}}{2*-3}=\frac{8-2\sqrt{61}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{61}}{2*-3}=\frac{8+2\sqrt{61}}{-6} $
| 1x^2-2.2x+1.44=0 | | 10y^2+40y+192=0 | | 36=9(5+x) | | 2z+6=50 | | 26y-6y+16=7y | | n=7–5n | | 45y+2y-15=13+3y+8y | | -5t^2+20t+1,6=0 | | 7x+5=15+3x | | -78+z=16 | | 1x^2-2.4x+1.44=0 | | 26x/5+666-3x/5=-2x/563.2+5 | | 3(x-4)=∆ | | 60-2y=8 | | 43z-2z-19=13+2z+6z | | 1/x=1/4 | | 9z+9z=126 | | 4h+7=8h-5 | | X+12-4x-15=-7x+24 | | x/5+3x/5+5=x-5 | | 2m+16=9m-5 | | 7v=38 | | -x^2+11x-36=0 | | -4x2=8x-3 | | 3t+8=19 | | 42x=22x+2 | | -7x+11=x-7 | | x=3-2*19/19 | | 2(5x+3)-2(2x-3=) | | X=9x/7 | | 8x-5=10x-1 | | X-14=3x+8 |