15/(x-4)+15(x+4)=4

Simple and best practice solution for 15/(x-4)+15(x+4)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15/(x-4)+15(x+4)=4 equation:



15/(x-4)+15(x+4)=4
We move all terms to the left:
15/(x-4)+15(x+4)-(4)=0
Domain of the equation: (x-4)!=0
We move all terms containing x to the left, all other terms to the right
x!=4
x∈R
We multiply parentheses
15/(x-4)+15x+60-4=0
We multiply all the terms by the denominator
15x*(x-4)+60*(x-4)-4*(x-4)+15=0
We multiply parentheses
15x^2-60x+60x-4x-240+16+15=0
We add all the numbers together, and all the variables
15x^2-4x-209=0
a = 15; b = -4; c = -209;
Δ = b2-4ac
Δ = -42-4·15·(-209)
Δ = 12556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12556}=\sqrt{4*3139}=\sqrt{4}*\sqrt{3139}=2\sqrt{3139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3139}}{2*15}=\frac{4-2\sqrt{3139}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3139}}{2*15}=\frac{4+2\sqrt{3139}}{30} $

See similar equations:

| 4x^2-30x-48=0 | | f-2=16 | | 110x+115=180 | | 3x+15+5x+5+180-20-8x=180 | | 2^(5x+4)+2^(9)=2^(10) | | 70÷2=n | | 70+2=n | | 16^(2-k)=8 | | -6(4-2x)-7=-15 | | -4-7(7x+4)=115 | | f(3)=9(3)+2 | | 30+8=4x-30 | | 2x+35=x-49 | | 84=-3x+7(2x+1) | | 2x+35=8-49 | | −2∣x−8∣=−17 | | 0.2(x-2)=0.25(1-4) | | 6.5x+8=6x+14 | | 1.785=x-414 | | 500-30*x=130+20*x | | X²-420=16x | | 5(5x+1)=25x+5) | | 5x+4(2x+9=10 | | -88=-8(1+5x) | | 5x-2(3x+5)=1 | | -2=(2x-3)/(x+1) | | -2y-2=(2y-3)(y+1) | | 8u^2+8u=48 | | (y+18)2=77. | | (x^-9)=19683 | | (2/3)x-7=-3 | | x^-9=19683 |

Equations solver categories