15/5q=q

Simple and best practice solution for 15/5q=q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15/5q=q equation:



15/5q=q
We move all terms to the left:
15/5q-(q)=0
Domain of the equation: 5q!=0
q!=0/5
q!=0
q∈R
We add all the numbers together, and all the variables
-1q+15/5q=0
We multiply all the terms by the denominator
-1q*5q+15=0
Wy multiply elements
-5q^2+15=0
a = -5; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-5)·15
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*-5}=\frac{0-10\sqrt{3}}{-10} =-\frac{10\sqrt{3}}{-10} =-\frac{\sqrt{3}}{-1} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*-5}=\frac{0+10\sqrt{3}}{-10} =\frac{10\sqrt{3}}{-10} =\frac{\sqrt{3}}{-1} $

See similar equations:

| x^2-2x+2=2 | | 7x-3=3x+31 | | (c-5)=(2c-4) | | 9y-4(y-2)=17 | | -33=-7a+-5 | | 12,92=0,68*x | | 4+7d=8-d | | 2x=1/2(9x-1+94) | | 2x-3=4x6 | | 12,92=64*x | | 12,92=68*x | | 9x+(-2x)=6-4x | | -13+15y=23+8 | | x*x*x=249 | | 5(7x+2)=8 | | Y=70-2x | | x.x.x=249 | | 4+x+3=2x-2 | | 2q+383=793 | | 12.92=68*x*32*x | | x/19=17/x | | 54x+2)=130 | | 2x+28+2x+28=16 | | 22p+880=2486 | | 12.92=68*x+32*x | | 7x+8=6x-4x | | -3x+-15=6 | | 25+3x=4x | | 5=(4-m)-3(2m+8) | | x+8+10=2x+18 | | -.9+3.2=-1.7p | | 4n-13=103 |

Equations solver categories