150+x*4,999,850=2*150

Simple and best practice solution for 150+x*4,999,850=2*150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 150+x*4,999,850=2*150 equation:



150+x*4.999.850=2*150
We move all terms to the left:
150+x*4.999.850-(2*150)=0
We add all the numbers together, and all the variables
x*4.999.850+150-300=0
We add all the numbers together, and all the variables
x*4.999.850-150=0
Wy multiply elements
4x^2-150=0
a = 4; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·4·(-150)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{6}}{2*4}=\frac{0-20\sqrt{6}}{8} =-\frac{20\sqrt{6}}{8} =-\frac{5\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{6}}{2*4}=\frac{0+20\sqrt{6}}{8} =\frac{20\sqrt{6}}{8} =\frac{5\sqrt{6}}{2} $

See similar equations:

| 10.5x4=42 | | x-(-72)=-22 | | 47=w- | | c=(-3)=100 | | u+(-15)=-5 | | 3.5z=2.25z-4.25+625 | | 0.80x+2=x | | x+x.2+x.4+x.6=180 | | 0.80x+2=x. | | f/6=-5 | | 5x-12=15+2x | | 39=3z | | x+(x*15)=150 | | 8(x+5)+4=0 | | 3x-33=-x+7 | | 2x-77=-x+7 | | s/6=4/5 | | -2(-3x+3)=58 | | 8+4a=29 | | 7a+14=5a | | x*x=9=0 | | x*x=-9=0 | | 3x+67=x-3 | | 15a/4=75 | | 2x-77=x-3 | | 5x=70000 | | 15/x=32 | | x*19250=x*2000 | | 15/x=100 | | [5(x-4)=(4x+7) | | X=30x+100 | | 3(3−x)+74−3x+3(2x+7)=0 |

Equations solver categories