15000/q-0.25q=0

Simple and best practice solution for 15000/q-0.25q=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15000/q-0.25q=0 equation:



15000/q-0.25q=0
Domain of the equation: q!=0
q∈R
We add all the numbers together, and all the variables
-0.25q+15000/q=0
We multiply all the terms by the denominator
-(0.25q)*q+15000=0
We add all the numbers together, and all the variables
-(+0.25q)*q+15000=0
We multiply parentheses
-0q^2+15000=0
We add all the numbers together, and all the variables
-1q^2+15000=0
a = -1; b = 0; c = +15000;
Δ = b2-4ac
Δ = 02-4·(-1)·15000
Δ = 60000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60000}=\sqrt{10000*6}=\sqrt{10000}*\sqrt{6}=100\sqrt{6}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{6}}{2*-1}=\frac{0-100\sqrt{6}}{-2} =-\frac{100\sqrt{6}}{-2} =-\frac{50\sqrt{6}}{-1} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{6}}{2*-1}=\frac{0+100\sqrt{6}}{-2} =\frac{100\sqrt{6}}{-2} =\frac{50\sqrt{6}}{-1} $

See similar equations:

| 4x+2=8x+-3 | | 26p=390 | | 1.69x^2=27.04 | | -4m–m+7=-23 | | –2(x+4)=20 | | 63+(7y+2)=180 | | y-8/3=10 | | 1,69x2=27,04 | | 5x+12+58=180 | | 6p^2-20p=-6 | | g-32=44 | | -18x-5=-7(3x+3 | | A=2^2-3(2+p) | | -2(11x+2)=-158 | | 5x-15+85=180 | | .75(x+9)=6 | | y=80(.4)^4 | | -61-14x=1-20x+38 | | P=2000t+97000 | | 2/3x-1=18 | | 5x-12Y=23 | | 4(x-7)2(10-x)3(x=) | | -4(3x+6)+6=-30 | | x+75+5x-15=180 | | x+153+(2x-8)=180 | | 8k+5=-21 | | .6x=1.5x-9 | | 4x7=2x-10 | | 4(x-7)2(10-x)3=x | | -8(2x+8)=16 | | -x+4(x+12)=-144 | | 20y-7=98 |

Equations solver categories