1500=(40+2x)(20+2x)

Simple and best practice solution for 1500=(40+2x)(20+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1500=(40+2x)(20+2x) equation:



1500=(40+2x)(20+2x)
We move all terms to the left:
1500-((40+2x)(20+2x))=0
We add all the numbers together, and all the variables
-((2x+40)(2x+20))+1500=0
We multiply parentheses ..
-((+4x^2+40x+80x+800))+1500=0
We calculate terms in parentheses: -((+4x^2+40x+80x+800)), so:
(+4x^2+40x+80x+800)
We get rid of parentheses
4x^2+40x+80x+800
We add all the numbers together, and all the variables
4x^2+120x+800
Back to the equation:
-(4x^2+120x+800)
We get rid of parentheses
-4x^2-120x-800+1500=0
We add all the numbers together, and all the variables
-4x^2-120x+700=0
a = -4; b = -120; c = +700;
Δ = b2-4ac
Δ = -1202-4·(-4)·700
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25600}=160$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-160}{2*-4}=\frac{-40}{-8} =+5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+160}{2*-4}=\frac{280}{-8} =-35 $

See similar equations:

| 7a/5-a/3=12 | | 42=9w-2w | | V+8v=81 | | -x/3-11=8 | | 23=x-24 | | 71=y2 | | 3p+12=48 | | 32000=x^2 | | 32^(6-2x)=13 | | 3.2x=73 | | x2+40x-176=0 | | x2+40x-384=0 | | ⅖x=10 | | x-7=(-14)+(-8) | | X-31=75-x | | 25x+255=900 | | 36-(-x+9)=7x-5 | | 8x+3=4.7x−(−2.8x−3.7) | | 15b=76 | | x(.1)=1000 | | 27=15+4x | | –15+–9f=–60 | | 15=b/3+12 | | 13=1+12x | | P(x)=1/2x^2+ | | 13−–8k=61 | | x*(.6)=8000 | | 2=u/3−2 | | b/9=28 | | (-2a)+9-5a+17=-2 | | 3s−2=10 | | 19/6b-7/6+35/6=-28/15-5/2b |

Equations solver categories