If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150x+100x(250-80x)=170x+250
We move all terms to the left:
150x+100x(250-80x)-(170x+250)=0
We add all the numbers together, and all the variables
150x+100x(-80x+250)-(170x+250)=0
We multiply parentheses
-8000x^2+150x+25000x-(170x+250)=0
We get rid of parentheses
-8000x^2+150x+25000x-170x-250=0
We add all the numbers together, and all the variables
-8000x^2+24980x-250=0
a = -8000; b = 24980; c = -250;
Δ = b2-4ac
Δ = 249802-4·(-8000)·(-250)
Δ = 616000400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616000400}=\sqrt{400*1540001}=\sqrt{400}*\sqrt{1540001}=20\sqrt{1540001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24980)-20\sqrt{1540001}}{2*-8000}=\frac{-24980-20\sqrt{1540001}}{-16000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24980)+20\sqrt{1540001}}{2*-8000}=\frac{-24980+20\sqrt{1540001}}{-16000} $
| 7^(x+1)-7^(x-1)=336 | | 6-3y=2y-4 | | 3x-16/8x+14=0 | | 3^x-^4=7^x-^1 | | x=7(4x+8)/2 | | 38+12x=64-x | | (p-1)(p^2+10p+24)=0 | | 7h-35=3h/2 | | 7h-35=3/2(h) | | 7h-35=3/2h | | a=5y | | 5x-17/3=-6 | | 60x+65x=300 | | -4(u-1)=6u+24 | | -4(u-10=6u+24 | | b/0.09=2.7 | | 171232020=x+(x*0.02)171232020=x+(x*0.02) | | 153-w=209 | | -14=6x+2(x+3) | | 3x-7/28=x+11/21 | | 150x+100x+(250-80x)=170x+250 | | .2(x)-x=140 | | p-6p-5/2=3-p-2/3 | | 3x-46=11x+42 | | 88=4(x+11) | | (8x-4)(6x+4)=(4x+3)(12x-1 | | 6n-4=3-n | | 2x=-3(3x+1) | | 3x+5=5(2x+7) | | 3x+5=(2x+7) | | 0.5x+0.25-0.2x=x-0.9 | | 5x+21-2(x+42)=0 |