150x=10000/(7x)

Simple and best practice solution for 150x=10000/(7x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 150x=10000/(7x) equation:



150x=10000/(7x)
We move all terms to the left:
150x-(10000/(7x))=0
Domain of the equation: 7x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
150x-(+10000/7x)=0
We get rid of parentheses
150x-10000/7x=0
We multiply all the terms by the denominator
150x*7x-10000=0
Wy multiply elements
1050x^2-10000=0
a = 1050; b = 0; c = -10000;
Δ = b2-4ac
Δ = 02-4·1050·(-10000)
Δ = 42000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{42000000}=\sqrt{1000000*42}=\sqrt{1000000}*\sqrt{42}=1000\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1000\sqrt{42}}{2*1050}=\frac{0-1000\sqrt{42}}{2100} =-\frac{1000\sqrt{42}}{2100} =-\frac{10\sqrt{42}}{21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1000\sqrt{42}}{2*1050}=\frac{0+1000\sqrt{42}}{2100} =\frac{1000\sqrt{42}}{2100} =\frac{10\sqrt{42}}{21} $

See similar equations:

| 1.5x+6.8=-5.2 | | 16-3x=-4(6x+4)-4(-5-5x) | | 2,75x-297=0 | | 7y+11=4y+11 | | 4x+7-x=-8 | | 1=3x-819 | | -2(x-2)-2x=3-(4x+6) | | 1,25x-297=0 | | 13x-7=4x-70 | | 4X+7(6y-3)=98 | | (X+1)/3+(2x-1)/4=0 | | -13+6x=-x+36 | | 4^x+5=1/2^2x+3 | | X+1/3+2x-1/4=0 | | X-4+4=y | | -2x-5=-3x+7 | | 41.25/x=3/4 | | (3(x+5)=6 | | 6x-240=108 | | 9+4x=-12+5x | | 1.4-0.7y=-1.2y-1.1 | | 6x-108=240 | | 1.59x=1500+0.80x | | 3x+2x-x=4x | | -4(x+2)-16=0 | | -15=0.4x-0.9x | | x+7-2=10 | | m÷8=7 | | 2(-6x-3)=6(5x-1) | | 3.8x-(-1-9.7x)=15.9x | | 8x-6=(x+3)+6x | | -4(x-3)-4x=3-8(x+6) |

Equations solver categories