152=w2-12

Simple and best practice solution for 152=w2-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 152=w2-12 equation:



152=w2-12
We move all terms to the left:
152-(w2-12)=0
We add all the numbers together, and all the variables
-(+w^2-12)+152=0
We get rid of parentheses
-w^2+12+152=0
We add all the numbers together, and all the variables
-1w^2+164=0
a = -1; b = 0; c = +164;
Δ = b2-4ac
Δ = 02-4·(-1)·164
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{41}}{2*-1}=\frac{0-4\sqrt{41}}{-2} =-\frac{4\sqrt{41}}{-2} =-\frac{2\sqrt{41}}{-1} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{41}}{2*-1}=\frac{0+4\sqrt{41}}{-2} =\frac{4\sqrt{41}}{-2} =\frac{2\sqrt{41}}{-1} $

See similar equations:

| 70+2x+3x=180 | | (7x+9)=9 | | 16x^2-2x+1=0 | | 16x^2-2x+0=0 | | 2t^2-24t+100=100 | | 2t^2-24t+100=64 | | 2t^2-24t+100=28 | | 3(x+4-2=2(2x+5)-x | | 6x+7(-2x+11)=149 | | 9-3n=42 | | 7r+2r-2r+4r-5r=12 | | 2t^2-24t+100=6 | | 10−c=-6c−10 | | 2t^2-24t+100=0 | | -5d=-4d+9 | | p+3p-3p-4p-3p=20 | | 4t+9=7t | | 2-13.7x=-8x-(6x+1) | | 3x-6x=x-2+10 | | m14=28 | | x+6/x-3=10 | | 8x-5x-2x=12 | | 15j-12j-j=20 | | 15+b=123 | | 17x+18=4(4x+3) | | 3+2x+2x=7 | | 4x/3+2x/9=5 | | 36=12x+24 | | 2y-7=81 | | 8t+2t+2t-9t=3 | | (2y)/6+18(6)=15(2) | | 6^x+2=500 |

Equations solver categories