If it's not what You are looking for type in the equation solver your own equation and let us solve it.
159x^2=2
We move all terms to the left:
159x^2-(2)=0
a = 159; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·159·(-2)
Δ = 1272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1272}=\sqrt{4*318}=\sqrt{4}*\sqrt{318}=2\sqrt{318}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{318}}{2*159}=\frac{0-2\sqrt{318}}{318} =-\frac{2\sqrt{318}}{318} =-\frac{\sqrt{318}}{159} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{318}}{2*159}=\frac{0+2\sqrt{318}}{318} =\frac{2\sqrt{318}}{318} =\frac{\sqrt{318}}{159} $
| 64x+24=16 | | 2(x+2)=3+2x+1 | | 4=w/3-9 | | 64x+24=4 | | 2x+3=-11x | | |2n−9|=|n−6| | | X²-y=8 | | 25+42.50d=40+37.50d | | 90+(10x-30)+5=180 | | 3^(2x-1)=13 | | √2x-1=x | | 2q−4=12 | | 7x+4+x+23=180 | | v4− –12=15 | | -1/3+5e=13/4 | | v/4− –12=15 | | 4x+13=2x+51 | | 95x=4,5x | | 4.5x=95x | | 1/2r+4=3/4r-3-2 | | 5,560-380x=1,720-260x | | 21x2-5x-50=0 | | x+12+x=13 | | 3×+15=3(1x+5) | | 3x;x=0.4 | | |4y-24|=0 | | -7(-3v+2)-5v=2(v-1)-4 | | -0.54x+0.34x=6.2 | | Y=24x+42 | | 32=6v=(2v+8) | | 1/3x+8=184/6 | | x^2-x-2186.88=0 |