15=5(1-m)(1-m)

Simple and best practice solution for 15=5(1-m)(1-m) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15=5(1-m)(1-m) equation:



15=5(1-m)(1-m)
We move all terms to the left:
15-(5(1-m)(1-m))=0
We add all the numbers together, and all the variables
-(5(-1m+1)(-1m+1))+15=0
We multiply parentheses ..
-(5(+m^2-1m-1m+1))+15=0
We calculate terms in parentheses: -(5(+m^2-1m-1m+1)), so:
5(+m^2-1m-1m+1)
We multiply parentheses
5m^2-5m-5m+5
We add all the numbers together, and all the variables
5m^2-10m+5
Back to the equation:
-(5m^2-10m+5)
We get rid of parentheses
-5m^2+10m-5+15=0
We add all the numbers together, and all the variables
-5m^2+10m+10=0
a = -5; b = 10; c = +10;
Δ = b2-4ac
Δ = 102-4·(-5)·10
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{3}}{2*-5}=\frac{-10-10\sqrt{3}}{-10} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{3}}{2*-5}=\frac{-10+10\sqrt{3}}{-10} $

See similar equations:

| 5r+3=-47 | | 7x+6.4=21 | | 0m-5=5m+40 | | 5t+(20t+5)=180 | | 10t-3=-3(1-30) | | 7x^2+63x=0 | | 5x+10+58+11x+2=90 | | (47+x)=3(x-11) | | 2c2+16c+24=0 | | a+6=2(3a-2) | | 6x−12.85=5x+12.15 | | 88-x=-35 | | 260=11-u | | 45/84=n/15 | | 2(x+6)=-5x-16 | | 2t-3.4=4.6 | | 5n=12n-n | | x(35x)=300 | | r−18.7=−2.8 | | -7h+2=23 | | 3x+2+3x-12=90 | | 2×+3y=19 | | 0.5x−5=0.18x+3 | | 15+130+y=180 | | 6x+5=8x–3 | | 8x-12=4(.5-6) | | 4m-1=28 | | 15+130+x=180 | | -0.6+0.5p+0.8-0.6=-0.2(8+8p)-3(0.1-0.4p) | | 10n^2-32n+22=0 | | 3h-10=-16 | | 7(d-4)+12=5 |

Equations solver categories