15j=3/11j

Simple and best practice solution for 15j=3/11j equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15j=3/11j equation:



15j=3/11j
We move all terms to the left:
15j-(3/11j)=0
Domain of the equation: 11j)!=0
j!=0/1
j!=0
j∈R
We add all the numbers together, and all the variables
15j-(+3/11j)=0
We get rid of parentheses
15j-3/11j=0
We multiply all the terms by the denominator
15j*11j-3=0
Wy multiply elements
165j^2-3=0
a = 165; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·165·(-3)
Δ = 1980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1980}=\sqrt{36*55}=\sqrt{36}*\sqrt{55}=6\sqrt{55}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{55}}{2*165}=\frac{0-6\sqrt{55}}{330} =-\frac{6\sqrt{55}}{330} =-\frac{\sqrt{55}}{55} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{55}}{2*165}=\frac{0+6\sqrt{55}}{330} =\frac{6\sqrt{55}}{330} =\frac{\sqrt{55}}{55} $

See similar equations:

| -4x+6=-8x+30 | | 2x+8=12x+6 | | 2(6)+x=14 | | 6x-4(5)=34 | | a–5/6=-32/3 | | 12x-13x-17=19 | | 12v-8v=32 | | 0=6.5+42x-4.9x^2 | | 580=26n+8 | | -6v+1=43 | | 69=21^x | | 2/3h-156=13/24 | | a–5/6=-32/3= | | 3a+9=2a-1 | | (8,-8)m=1/8 | | 0.2(5x−6)+2x=0.8 | | 1/2t=4=3 | | -16-8n=-10 | | -4f=-48 | | 4b-(7)=37 | | x/9-5=17/18 | | (2x^2+7x-49)=0 | | 2-x=-2x-8 | | 11-2(8+3x)=14 | | 40(14.50)=26n+8 | | 2/3h-156=3^13/24 | | 5(7x)+4+2=30 | | 3(2x-2)=(2x+3) | | (22^2+7x-49)=0 | | -22=-2(5+k) | | 14=7x-30 | | 40z^2+43z=0 |

Equations solver categories