If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2+137n-8740=0
a = 15; b = 137; c = -8740;
Δ = b2-4ac
Δ = 1372-4·15·(-8740)
Δ = 543169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{543169}=737$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(137)-737}{2*15}=\frac{-874}{30} =-29+2/15 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(137)+737}{2*15}=\frac{600}{30} =20 $
| 40x=26x+8 | | 36x=x-4x | | (2a-4)+2(a-5)=3(a+1) | | 1-3+a=5/4 | | 3x+9=11x-71 | | -3x^-x+2=0 | | 5.3x-5.14=6.573 | | 2x^-6x+12=0 | | 36x=x-2x | | 26=x/4+11 | | 2.5x+1.9=6.3 | | 4(2x+3)=4x | | 1.2x+4.7=3.1x-1 | | 2n2+30n-4608=0 | | 2x/5=-25 | | 1+2x=3(2x+4)-5(x-2) | | 4(3x-3)=31 | | 5b-3=15 | | 8/52=x/30 | | 2x+6x-4=4x=24 | | T-4(t-8)+7(3t+4)=0 | | (-4)+(-9)=a0 | | 2(.5n+3n)=2.5n+27 | | 3y-5+y+27=8+5y+22-3y | | 2(.5n+3n)=2.5n=27 | | 3(-y+3)+y=-3 | | x/14=11/35 | | 4+6p-3=9p+4-2p | | 1500-2x=x | | 1500+2x=x | | 3^x-3=40-9(3^x) | | 4x/3+7=50 |