If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2-15-90=0
We add all the numbers together, and all the variables
15t^2-105=0
a = 15; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·15·(-105)
Δ = 6300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6300}=\sqrt{900*7}=\sqrt{900}*\sqrt{7}=30\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{7}}{2*15}=\frac{0-30\sqrt{7}}{30} =-\frac{30\sqrt{7}}{30} =-\sqrt{7} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{7}}{2*15}=\frac{0+30\sqrt{7}}{30} =\frac{30\sqrt{7}}{30} =\sqrt{7} $
| 13=2b-15 | | -5x+7-3(x-1)=-(4x-3)-3x+3 | | 5x(7x+2)(2x+7)=0 | | F(-5)=3x-10 | | 8x=-225 | | 3x+(-19/17)=-5 | | Y=-4x^2-4x+24 | | 525=505+y+20 | | 525=525+y+20 | | 525=x+20 | | 49-2e-7=180 | | 10^(-5x)=4 | | 10^-5x=4 | | m+10-16=14 | | 4x+3-92x=12345 | | x^2+0.18x=0 | | (X+4)(x-2)(x)=216 | | 3x+11=3+x | | 7x(2)^3x=840 | | 16/35=x/1 | | 3/7=x/25 | | .66=x/60 | | 13(6x+27)+2(x-3)=7 | | 25x=16x+52 | | 2x-16=4x-20 | | 9x2-250x-1895=0 | | -(9x+14)(x-6)=0 | | 9x2+250x+1895=0 | | 6y=(y=9) | | 4x+10+3x-4=180 | | 16=w-17 | | 2(-2y+(-3))=-18 |