If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15u^2+28u=0
a = 15; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·15·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*15}=\frac{-56}{30} =-1+13/15 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*15}=\frac{0}{30} =0 $
| v/18=16 | | 30z=810 | | x+6=2+4 | | 29=8+7b | | 2x+11=14x | | 75=3+6x | | 34=1/2(3x-2)-(x+6) | | (6)^-4x-5=(1/6)^8x | | 3(64.6)+15y=-1 | | -7y+10=31 | | 5(0.6m+2.5)=2(2.5m+3.05) | | 29=u/3+12 | | (x+12)=110 | | -13-(x-2)=7x+15 | | 4(-3-6x)+6=40-1x | | -3(4x+8)=-108 | | 13x+53=90 | | 3a+41=27-4a | | 18x+25=90 | | 125^3x-4=24^4x+2 | | 9^-x+5=26^6x-10 | | 11=1+2t | | ((x+2)*4)-20=0 | | (x+2)*4=0 | | 6x4+9=289 | | 17+4x-8=7x+8=3x | | 6q-3q-q=24 | | 3w+2+55=90 | | 3w+2+55=180 | | 24x=8. | | 24x=8.25x | | y-2=92 |