15x(2x+2)=10(3x+4)

Simple and best practice solution for 15x(2x+2)=10(3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x(2x+2)=10(3x+4) equation:



15x(2x+2)=10(3x+4)
We move all terms to the left:
15x(2x+2)-(10(3x+4))=0
We multiply parentheses
30x^2+30x-(10(3x+4))=0
We calculate terms in parentheses: -(10(3x+4)), so:
10(3x+4)
We multiply parentheses
30x+40
Back to the equation:
-(30x+40)
We get rid of parentheses
30x^2+30x-30x-40=0
We add all the numbers together, and all the variables
30x^2-40=0
a = 30; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·30·(-40)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*30}=\frac{0-40\sqrt{3}}{60} =-\frac{40\sqrt{3}}{60} =-\frac{2\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*30}=\frac{0+40\sqrt{3}}{60} =\frac{40\sqrt{3}}{60} =\frac{2\sqrt{3}}{3} $

See similar equations:

| X3-1=x2+1 | | R(x)=3x,C(x)-0.01x^2+0.4x+6 | | -4.2x31.5=65.1 | | 2x+3x=9x | | 3(n-5)+2n=5n-15 | | R(x)=6x,C(x)=0.01x^2+0.4x+ | | 5b-3=(b+7)+3b | | -5.5x+0.56=-1.46 | | d/23=26 | | 3c-2=5 | | x2+4x+18=0 | | (x-36)+(.3x)=180 | | -515=h-664 | | T2=n2+T2+2n+9 | | X+1/9=2x/3x+6 | | 3×7=21x=33 | | (x-36)+(1/3x)=180 | | 5=t+68/21 | | T2=T2=2n=9 | | 3(2y+7)=18 | | 45.5=4/5x+10 | | -4(2x+7)=18 | | 24(j-951)=912 | | 360=20(w+15) | | 3x+5x-12+5x+19=180 | | a=36+72/2 | | 21(b-968)=546 | | 7x-3(x-9)=2(x-4)+3 | | 21(b −968) =546 | | x+2+15+4x-10=180 | | x+1/3x=28 | | 5(3x+4)=10(2x+1) |

Equations solver categories