If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x+590=20x+545/x=35
We move all terms to the left:
15x+590-(20x+545/x)=0
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
15x-(+20x+545/x)+590=0
We get rid of parentheses
15x-20x-545/x+590=0
We multiply all the terms by the denominator
15x*x-20x*x+590*x-545=0
We add all the numbers together, and all the variables
590x+15x*x-20x*x-545=0
Wy multiply elements
15x^2-20x^2+590x-545=0
We add all the numbers together, and all the variables
-5x^2+590x-545=0
a = -5; b = 590; c = -545;
Δ = b2-4ac
Δ = 5902-4·(-5)·(-545)
Δ = 337200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{337200}=\sqrt{400*843}=\sqrt{400}*\sqrt{843}=20\sqrt{843}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(590)-20\sqrt{843}}{2*-5}=\frac{-590-20\sqrt{843}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(590)+20\sqrt{843}}{2*-5}=\frac{-590+20\sqrt{843}}{-10} $
| 72+27x+1+26+1=180 | | 12=20x+18 | | x+105=82 | | -8x-(3x+6)=4-x | | -45-28v=49v+56 | | 72+27x+1+26+1=`80 | | -11-x=44-2x | | x/0.2+x/0.1=5 | | z/6+7=−79 | | X+3=-4+4x-2 | | z6+7=−79 | | -10w-8+4w=10 | | n/6=-11.9 | | 12+2x=3x+2 | | T-8=7t | | 2x+5+3x=2(x+1)+3(x+1) | | 5b-15=50 | | k/8+6=17 | | 3x–7+x=5 | | 4x-9=4x+13 | | -4(x-2)+3=-5x+11 | | 6-(2)(3)=z | | x+40+130+50+x=180 | | 1x/10=2/4 | | u+6/4=3 | | 3/4(-12x+16)=-10x-24 | | 034*n=80.34 | | 9(0)=3z | | –(5+2x)=4(2–3x) | | x+45+x+47+104=180 | | x/3=1=4 | | 2/3x+(-3)=-1/4+21 |