15x+x(x-1)=2(18+7x)

Simple and best practice solution for 15x+x(x-1)=2(18+7x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x+x(x-1)=2(18+7x) equation:



15x+x(x-1)=2(18+7x)
We move all terms to the left:
15x+x(x-1)-(2(18+7x))=0
We add all the numbers together, and all the variables
15x+x(x-1)-(2(7x+18))=0
We multiply parentheses
x^2+15x-1x-(2(7x+18))=0
We calculate terms in parentheses: -(2(7x+18)), so:
2(7x+18)
We multiply parentheses
14x+36
Back to the equation:
-(14x+36)
We add all the numbers together, and all the variables
x^2+14x-(14x+36)=0
We get rid of parentheses
x^2+14x-14x-36=0
We add all the numbers together, and all the variables
x^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $

See similar equations:

| 4(x+3)=3x+2+1x | | 20+312x=30+234x | | 5=2v-v | | x/11-9=3/22 | | 7(c-12)c=-21 | | 2r+2-6r=-6 | | 9/n=3/9 | | x3−12x2−193x+660=0 | | 1/4x-10=7 | | 3(×+2)=x+30 | | 8(8+3m)=184 | | X-6=3(x+4 | | 3c+2(3c-6)=24 | | -6=-3r+5r | | 200m-125m+48500=51000-127m | | 5x/9=x-23 | | 2=8x+8 | | 4v+3-5=14 | | K=c+2713.15(c) | | 3r+3-6-4r-9-3r=2r+6 | | x^+7=-47 | | 2×-5y=10 | | 7x-3=-4x+9 | | 7|8w=1|2w+3|4w | | k^2+2k=13 | | x/11-9=21/22 | | 65x^2+1=2x | | k2+2k=13 | | {9x}=99 | | ((3x)/4)+4.5=8.25 | | 2x^+6=-34 | | 6x+27=45-x |

Equations solver categories