If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+10x=0
a = 15; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·15·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*15}=\frac{-20}{30} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*15}=\frac{0}{30} =0 $
| 17−2d=7 | | 2=6+2p | | 4,2x2+21x+4=0 | | 9f-11=14f+4 | | 2/1=n/6 | | -17x+14=-3(8-5x) | | 4x+8-x=46 | | 11y(1+2y)=0 | | x^2+3.3x+0.7=0 | | -z+-16=0 | | 8.4o-6.8=14.2=6.36 | | 91=1+-10c | | -2=-10+2p | | 3r=10 | | 4(5x+65)-9=7(4x-34) | | 1=-5+3v | | 10x-5=5/10 | | 4x-12+2x+20=180 | | 23x=342 | | 4(14+b)=12 | | 13x+13=-156 | | -5(r+2)=87 | | -2x-70-4=146 | | 5n=20(4+0.25n | | 5x-3x=-26 | | 7(1-7x)=252 | | 3(x+20)=36 | | -8(b-3)-2=86 | | -2+2m=6+5m | | -116=-6n+8(5+4n) | | G=7/6(p-29) | | 6(1-5x)-7=119 |