If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+12x-8=0
a = 15; b = 12; c = -8;
Δ = b2-4ac
Δ = 122-4·15·(-8)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{39}}{2*15}=\frac{-12-4\sqrt{39}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{39}}{2*15}=\frac{-12+4\sqrt{39}}{30} $
| 17x2+11x+15=0 | | 2x2+17x-16=0 | | 4x2-12x-6=0 | | 13x2+2x-8=0 | | 20x2-2x+4=0 | | 6(2x+3=42 | | 9/17=36/x | | w+2/4=5 | | 10n+2=43n | | x-25=4x+10=180 | | 8x-2=9x-14=180 | | -(5n-5)+10n=2(5n+40) | | 40x-5x^-0.5=0 | | 5.3=v/7+12.2 | | 4x+(5+(21x-13))=76 | | x-46=82 | | 8x+6+4x+38=43 | | 4w-4/5=-3/2w+2/5 | | 6x-48+4x+38=90 | | 34-v=22 | | 6.1-74.3-2d=11.8 | | (2i+1)-4=136 | | m-m=2 | | 1+1*b+1*b+1=56 | | 2b+b+1=56 | | 9x-35+6x-10=180 | | 3(x+8)+4x=2x-6 | | 9/70=x/60 | | 9(x-1)-3x=3(12+x) | | 17x+8x=81 | | 4x+42=110 | | 7^x+7^(x-1)=56 |