If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+12x=0
a = 15; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·15·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*15}=\frac{-24}{30} =-4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*15}=\frac{0}{30} =0 $
| 4y-1+y+12=5y+20-3y | | 100=4y-20 | | 20(1-y)+6y=13 | | 12(y-2)-4y=-8 | | 3(b+4)+8=17 | | x+3÷3=x+5 | | X(x+1)=1980 | | 180/100=x/10 | | 5(2x-1)=3(3x+2 | | G5x-9=20 | | 6^2=x(x+5) | | (x-3)(x+5)=(x+2)(x-3)+25 | | 3y+5/4=24 | | (x-3)(x-5)=(x+2)(x-3)+25 | | (2x-1)^2-3^2=0 | | 2/3y+1/3=4 | | 5+3*2=x | | 8(x-4)-4x=-12 | | 7(x+6)+9x=10 | | 5−(x−3)=4x−(3x−8) | | 8×y=56 | | y=3.3+6.5 | | (2x-5)^2+11=0 | | 12x1/4=15x-1/5+2x-5/3x-1. | | 2(x^2-4x+2)=0 | | |x-3|/|x+4|=5 | | 2n-4=n-8 | | 6/15d+9/30-1/6d=d+1.5-2/12d | | X+23=2x-x+45 | | 100x=42 | | 4a-1=a+7 | | -3(y+4)=17 |