If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+13x-2=0
a = 15; b = 13; c = -2;
Δ = b2-4ac
Δ = 132-4·15·(-2)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*15}=\frac{-30}{30} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*15}=\frac{4}{30} =2/15 $
| 6x-5=x10 | | X-(7x-69)+(6x-50)=2x-(x-8) | | 1/2(x-5)=5/6 | | 18/x=x/162 | | x*x+12=5 | | 3x-7/8=5/6 | | 7m-2/11=3 | | 10-(-10+y)-y=0 | | 3x-22=14x | | 5x-3/x+1=7/2 | | 40x÷3=4+x | | Y-14=-y-4 | | 5x+9=2x10 | | 3(x+6)=14+2x | | y/10+6=-8 | | 14=(6+4x)/5x | | 6(6x-2)=35x | | (4b-2)*(2b+5)= | | -5(r+9)=-82 | | 4w=2w | | -4=5/x-2 | | 4=-5/x-2 | | 62=2(3x+4) | | 12x=7x+4+4x | | (4x+5)/3=-1 | | 7+9a=25 | | 9g-2=8g+1 | | 2(4q-5)=22 | | (4x+5)/3+(3x-9)/9=-1 | | 10z=6z-7+3z | | 2x-3/35-1/10=4-3x/28 | | 4(2n+1)=5n-5 |