If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+19.5x+4.5=0
a = 15; b = 19.5; c = +4.5;
Δ = b2-4ac
Δ = 19.52-4·15·4.5
Δ = 110.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19.5)-\sqrt{110.25}}{2*15}=\frac{-19.5-\sqrt{110.25}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19.5)+\sqrt{110.25}}{2*15}=\frac{-19.5+\sqrt{110.25}}{30} $
| 11x-8=11x+12 | | 7s–(3s+1)=4(3+s) | | 7(1x-7)=-133 | | 2/3(6x-12)=-17 | | 7(1x-7)=133 | | x+√3=12 | | X-9=8(2)+x+9(3) | | 2x+7=28+5x | | (b+7)(b-3)=0 | | -16t^2+30t-15.5=0 | | 5(3j+1)-10j=-(2-7j) | | 5(-6-3x)=-60 | | 4x+6=6x−2 | | 10+3x=-5-2(x+5) | | −3=0.5(x+4) | | 70+15x+4+12x-2=180 | | 2(4+7x)=-76 | | 5(2x-2)=16x | | 2/3(w+1)=-10 | | -4(x+5)=5/3 | | 3(5x–2)–6x=3(3x+2) | | -7x-1.7=-9x+1.9 | | (x-7)(x-10)(x+10)=0 | | 4x+1/2=3/4 | | 5x2-7x-12=0 | | 3÷x=8 | | 3y/4–y/2=5 | | -(5+x)-4x=35 | | 5n-9^4=-2 | | 2(x+I)+6=20-3x | | Y=2.4x+7 | | x+9+x+9=6x-2 |