If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+29x+12=0
a = 15; b = 29; c = +12;
Δ = b2-4ac
Δ = 292-4·15·12
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-11}{2*15}=\frac{-40}{30} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+11}{2*15}=\frac{-18}{30} =-3/5 $
| -9a=-33 | | 10^x=148 | | .5=2/x | | 1.4(5k+35)-8=12 | | 6/13(y-2)-63/13=-5 | | 5(2x+4)=1770 | | 38+8x=6x+5(x+7) | | 7/5(5k+35)-8=12 | | F(x)=x/3 | | (5x+12)=(-5x-8) | | 2/7(y-1)-33/7=-5 | | 7(3y-5)=-22(5-y) | | 2x+4,2x+3,2x=90 | | 9y+14=9(y+2)-9 | | 2x+4,2x+3,2x=180 | | 5(2p-2)=-90 | | 4(2x-3)=66-2(x+4) | | 4z+8=4(z+6)-22 | | 2.75c=500 | | 9z+13=9(z+3)-17 | | x^2-19x-91=0 | | -8y+3y=44 | | -12÷7z=48 | | 4a-12a+12a=-4 | | 6w+4=6(w+3)-14 | | 8-6x=8(1+3x) | | 0.8x-4=2.3x-19 | | 10a+5a-15a+a=5 | | 10a+5a-15a+a=15 | | 2.2z+7=3.2z | | 1n-6(n-1)=7(1n+6)+6n | | 18v-10v+2v-7v-2v=15 |