If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+3x-3=0
a = 15; b = 3; c = -3;
Δ = b2-4ac
Δ = 32-4·15·(-3)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{21}}{2*15}=\frac{-3-3\sqrt{21}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{21}}{2*15}=\frac{-3+3\sqrt{21}}{30} $
| 12x2+18x+5=0 | | 11x2-10x-4=0 | | x2-19x-11=0 | | 4x2+18x+4=0 | | 3x2+10x-9=0 | | 19x2-16x-5=0 | | 10x2-13x-13=0 | | 4x2+13x-10=0 | | 8p+13p-4p=153 | | 8.7=4u-4.1 | | 73+9x+8=90 | | (2x-3)(130)=180 | | 7x+70=360 | | -1-3b=-4 | | 2(3x-5)-7=1 | | 5x18=-4x | | 5(3x+4)=4(x+6) | | -18x=1 | | 3x-5=16-x | | -5x22=-67 | | 118-x=96 | | 1/2x+12-60=-0.5x-60+3x | | 140=176-8x | | 2x+28.5=180 | | 12t+6t-7t=3t-2t | | 12=6t-7t=3t-2t | | 5=800-18w | | 476=800-18w | | x+46=64 | | (4)9=x+50 | | 2(x+5)=-4x-26 | | 6w-32=4(w-9) |