If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+3x=0
a = 15; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·15·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*15}=\frac{-6}{30} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*15}=\frac{0}{30} =0 $
| -3+x/5=6 | | -10(1)f(1)=1 | | 4(v+6)=-6v-26 | | 14=x/3+13 | | 3(2x+2(-2=x+3 | | -20+5x=-5 | | 0=100-6p | | 3(2x+2=x+3 | | w+8/14=6 | | 3(0)+f(0)^2=-4 | | 22-2x=-10 | | X+2(x+2)=3x+2(x-6) | | 3(-1)+f(-1)^2=-4 | | 3x=24.9 | | 10w+8=18 | | 4(8-2)+5(x-3)-25=x+8 | | 3x-24.9=0 | | 3(1)+f(1)^2=-4 | | 4.5x+2=-12x-32 | | v/8+5=8 | | (5x+14)+(x+19)+(2x19)=180 | | v8+5=8 | | x+5+3x=7=90 | | 2(x-3)+5=3(-1) | | |3x-6|=130 | | 22343m=234m-234243343m+23423423423423423423423m | | a+114=4 | | 2m-2m=m | | 9x+3(x+3)=3x+2(3x+9) | | b+8=12.2. | | 5x+14+19+2x+19=180 | | y=60(90-y) |