If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+40x+15=0
a = 15; b = 40; c = +15;
Δ = b2-4ac
Δ = 402-4·15·15
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{7}}{2*15}=\frac{-40-10\sqrt{7}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{7}}{2*15}=\frac{-40+10\sqrt{7}}{30} $
| 18x2+16x+18=0 | | 3+8v=5v-12 | | 90-8x=x | | 14x2+17x+14=0 | | 11x-1+24=12x+12 | | 10x2+7x+3=0 | | 2x+6+4x=-3x+2-x+24 | | ×2+y2-8×-10y+25=0 | | 4x2+x+1=0 | | -3n+7n-12=6n+2n | | 100=x+2/x | | -3n+7n-12=6n+2 | | -2=3+x/4 | | 2x-11+x=4x+34 | | 2(-3x-4)=-2(x+12) | | 7+7n=13+6n | | 1.8x-74.75=1.2x(0.6x-24.75/0.4x) | | 5/8=x+2/9 | | 1.8x-74.75=1.2x(0.6x-24.75/0.4) | | 2X-2.3=x | | 12+7k=8+6k | | -3t÷19-5t=91 | | 13x+15=−4 | | -x/3=-14 | | 6+3=13-5x | | 9x-9=9-1 | | 4a-3-a+4=18 | | 39+14=x | | (3)/(7)-(1)/(4)y=(1)/(2) | | 1/2r=7= | | -18=-2x+5-8x+7 | | (4+m)/(3)=(5)/(6) |