If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+60x=0
a = 15; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·15·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*15}=\frac{-120}{30} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*15}=\frac{0}{30} =0 $
| x+20+40=180 | | 6x=9-9x | | (2+5i)-(-6+3i)=8+2i | | 8x−12=65−3x | | 7x+8-5x=-10 | | -6(3s-1)=30 | | 2)-27/25x=-9/5 | | 2x+20+90+3x+10=180 | | 4(2y-3)=13y-12-5y | | (5x-8/3)=(11x-9/5) | | 2)-27/25x=9/5 | | 3/8x+1/5×=46 | | 13x+90=64 | | y=(15)+1.29 | | -5(2-w)+7/3w-12/3= | | 4(k-8)=-31+4k | | 2x+6+3x+9+5x+5=180 | | 10x+53=103 | | 4+4(4r+7)=-96 | | 1/2a+3.75=a | | 2/3n-1/3n-6=-5 | | 5t–8=12 | | 2x+6+3x+9+5x+5=120 | | 3+5(2v+5)=3(3-3v) | | w/5=w/4+3 | | -156=8(1+5p)+p | | 3/5n=1/3 | | 4(k+8)=32+4k | | (x)/(3)+(x)/(4)=7 | | 5t+9.2=3.4t+20.08 | | 3(6-2x)+23=4-1/3(18x-3) | | 3)-2.7t=810 |