If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+6x-20=0
a = 15; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·15·(-20)
Δ = 1236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1236}=\sqrt{4*309}=\sqrt{4}*\sqrt{309}=2\sqrt{309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{309}}{2*15}=\frac{-6-2\sqrt{309}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{309}}{2*15}=\frac{-6+2\sqrt{309}}{30} $
| 6x2+8x-15=0 | | 11x2+4x-7=0 | | 7x2-x-19=0 | | 20x2+15x+12=0 | | 17x2-2x-12=0 | | 7x2-20x-15=0 | | 14x2+14x-7=0 | | 4x2+2x+11=0 | | 18x2+16x-11=0 | | 17x2-11x-7=0 | | 19x2+7x+16=0 | | 11x2-15x-10=0 | | 18x2-11x-20=0 | | 11x2-4x-3=0 | | 19x2+10x-18=0 | | 15x2+2x-10=0 | | 6x2+2x+19=0 | | 18x2+12x-6=0 | | 16x2+16x+16=0 | | 15x2+3x-3=0 | | 12x2+18x+5=0 | | 11x2-10x-4=0 | | x2-19x-11=0 | | 4x2+18x+4=0 | | 3x2+10x-9=0 | | 19x2-16x-5=0 | | 10x2-13x-13=0 | | 4x2+13x-10=0 | | 8p+13p-4p=153 | | 8.7=4u-4.1 | | 73+9x+8=90 | | (2x-3)(130)=180 |