If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+8x=0
a = 15; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·15·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*15}=\frac{-16}{30} =-8/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*15}=\frac{0}{30} =0 $
| 69-7b+3b=48 | | 3(-4)=5(x+2) | | -m-15=-6+2m | | t^2+7t=84 | | x+0.04=520 | | 0.26x=0.104 | | 4|7-6x|=3x+8 | | 14x÷4=269.50 | | −49(18x−36)=−88 | | m/3+2/3=51/3 | | 6=-1+m/2 | | 4x-7=2x=2(3x-3)-1 | | t^2+t=84 | | 0.6a=-9 | | 5c-4c+c-3c,c=-3 | | 200x-125x+43425=45000 | | x-10(0)=5 | | 3y-6=2× | | 0-10y=5 | | A=-3n+7 | | 10p=7p+12 | | X^4=y | | 2x+2(x+1)=25 | | 105-9d=87 | | (3x+7)=x+19 | | 12x-5=151 | | -40+8m=8(7+7m) | | -15+3x=-45 | | 1/2=2w | | -40+8m=8(7+7m | | (243)^x+5=(2187)^3x-1 | | 17k=225 |