If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-12x-10=0
a = 15; b = -12; c = -10;
Δ = b2-4ac
Δ = -122-4·15·(-10)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{186}}{2*15}=\frac{12-2\sqrt{186}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{186}}{2*15}=\frac{12+2\sqrt{186}}{30} $
| 16x2-18x-2=0 | | 7x2-19x-1=0 | | 14x2-16x-5=0 | | 5x2-19x-7=0 | | 2x2+3x-13=0 | | 17x2-20x-10=0 | | 7x2-16x+10=0 | | 16x2+14x-20=0 | | 17x2+12x+15=0 | | 15x2-15x+14=0 | | 20x2-16x-14=0 | | 19x2+5x-1=0 | | 20x2+11x-17=0 | | 11x2+5x+5=0 | | (3x-15)(7x+21)=0 | | 10x2-15x-11=0 | | 5x2-3x-9=0 | | 17x2+19x-12=0 | | 20x2+x-11=0 | | 11x2+2x-8=0 | | x+50+10-x=90 | | 9.5x-0.05=10.5x+1.05 | | -x2+11x+480=0 | | 5x2+14x-2=0 | | 8x2+20x-8=0 | | 8x2+17x+8=0 | | 4x2-11x-12=0 | | (m+3)/8+(3m-1)/14=(2m-3)/7+(3m+1)/16 | | x+20135=10135 | | x/3-2(x-1)=5x/2-3 | | 5x/4-10x/3=15 | | -20x=-88 |