If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-3x-9=0
a = 15; b = -3; c = -9;
Δ = b2-4ac
Δ = -32-4·15·(-9)
Δ = 549
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{549}=\sqrt{9*61}=\sqrt{9}*\sqrt{61}=3\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{61}}{2*15}=\frac{3-3\sqrt{61}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{61}}{2*15}=\frac{3+3\sqrt{61}}{30} $
| 4x2+7x-10=0 | | 13x2-16x+16=0 | | 2x2-2x-19=0 | | x2+8x-17=0 | | 19x2-15x+20=0 | | 10x2+16x+4=0 | | 7x2+9x+12=0 | | -20=5(v+2)-2v | | 16x2+14x+16=0 | | 5/6t=-2 | | 93+76+(11x-2)+(14x-7)=360 | | -6-2x=9-3x | | x=10+1/15 | | 5x+8+2x+16+8x+5=180 | | 98t-4.9t^2=0. | | (t-10)^2=100 | | 115+x+85=180 | | 39.3+90+x=180 | | 6x-14+3x+x=180 | | 60=-10+5m | | 45-9(9+7)n=2 | | (6x+26)(16x)=180 | | (x-y)-y+4=0 | | x-43=63 | | 60-x=43 | | 3.75=x+2.5 | | 3.23=x+2.1 | | 2.6=x-3.4 | | 1/2x-1/3=1/4x+1/6 | | 13=v/2+9 | | 180=8x-36+40 | | x^2+2x=-264 |